Software for Estimating Sparse Hessian
Matrices

THOMAS F. COLEMAN

Commell University

and ' '

BURTON S. GARBOW and JORGE J. MORE
Argonne National Laboratory

Categories and Subject Descriptors: E.1 [Data}: Data Structures—graphs; E.2 (Data]: Data Storage
Representations—linked representations; G.1.3 [Numerical Analysis}: Numerical Linear Algebra—
sparse and very large systems; G.1.6 [Numerical Analysis}: Optimization—nonlinear programming
General Terms: Algorithms :

Additional Key Words and Phrases: Numerical differentiation, gradient, Hessian matrix, large sparse
optimization, nonlinear problems, graph coloring .

The Algorithm: Algorithm 649. FORTRAN Subroutines for Estimating Sparse Hessian Matrices.
ACM Trans. Math. Softw. 11, 4 (Dec. 1985) 378

1. INTRODUCTION

The solution of a nonlinear optimization problem often requires an estimate of
the Hessian matrix for a mapping f: R” — R. In large scale problems the Hessian
matrix Vf(x) is usually sparse, and then estimation by differences of gradients
is attractive because the number of differences can be small compared to .the
dimension of the problem. In this paper we describe a set of subroutines whose
purpose is to estimate the Hessian matrix of a mapping f: R" — R with the least
possible number of gradient evaluations. :

The problem of estimating a sparse Hessian matrix can be phrased in the
following terms: Given a symmetric matrix A of order n, obtain vectors d,, ds,
-+ ., dp such that Ad,, Ad,, . .. » Ad, determine A uniquely. In this formulation A
is associated with the Hessian matrix V’f(x) and the product Ad is associated
with an estimate of V*f(x)d. Typically, the estimate of V?(x)d is obtained by the
forward difference

V¥(x)d = Vf(x + d) — Vf(x) ' (1.1)

The work of the first author was supported in part by the Applied Mathematical Sciences subprogram
of the Office of Energy Research of the U.S. Department of Energy under Contract DE-AC02-
83ER13069. The work of the second and third authors was supported in part by the Applied
Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of
Energy under Contract W-31-109-Eng-38.

Authors’ addresses: T. F. Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853. B. S. Garbow and J. J. Moré, Mathematics and Computer Science Division, Argonne National

Laboratory, Argonne, IL 60439.
™ 1085 ACM NNAR_ENN /RS /1900.N2R2 NN 75

364 - T.F.Coleman, B. S. Garbow, and J. J. Moré

or the central difference
V¥(x)d = 3[Vf(x + d) — Vf(x = d)] (1.2)

approximation. Thus each evaluation of Ad requires at least one gradient evalu-
ation. Also note that since A is associated with the Hessian matrix, the sparsity
structure of A should represent the sparsity structure of V?f(x) for all x of interest.
In particular, since in a minimization problem the Hessian matrix is usually
positive definite at the solution, it is natural to assume that A has nonzero
diagonal elements. '

The algorithms that we have implemented are based on the work of Powell
and Toint [10], and Coleman and Moré [2]. These authors considered direct and
indirect methods for determining symmetric matrices. Indirect methods usually
require fewer gradient evaluations while direct methods produce more accurate
approximations to the Hessian matrix. We have implemented both types of
methods. For purposes of exposition it is convenient to view our algorithms as
lower triangular substitution methods.

A lower triangular substitution method is specified by a permutation matrix »
and a partition of the columns of a symmetric matrix A into groups C,, ..., C,
such that if L, is the lower triangular part of x TAx then columns in .the same
group do not have a nonzero in the same row position of L,. We now show that
a partition of the columns of A with this property is consistent with the
determination of A by a lower triangular substitution method. Let

S ={G, j): =) =z =(j)},
and given a group C define a direction d € R" with components §; # 0 if j belongs
to C and §; = 0 otherwise. Then
Ad = 2 6lah
lec
where a,, ..., a, are the columns of A. To determine a; with (i, j) € S and
j € C, note that for any other column / € C we must have (i, !) € S. Thus,
(Ad);=dja; + Y .
(i,)&S, leC
This expression and the symmetry of A show that a; depends on (Ad); and on
elements of L, in rows | > i. It follows that we can determine the rows of L, in
the order n, ..., 1, and thus A can be determined with p evaluations of Ad.

A lower triangular substitution method is direct if whenever (i, j) € S and
j € C for a given group C, then there is no pair (i, !) with (i,) € Sand l € C.
Thus in a direct method a; depends only on the difference parameter §;, while in
an indirect method a; may also depend on other difference parameters §, with
| € C. As we shall see, this is an important difference between direct and indirect
methods.

Given the sparsity pattern of a symmetric matrix A of order n, subroutine
DSSM determines a permutation matrix = and a partition of the columns of A
consistent with the determination of A by either a direct or indirect lower
triangular substitution method. Subrouting FDHS computes an approximation
to the Hessian matrix of a mapping f: R” — R by a lower triangular substitution
method. Most of the information needed by FDHS is provided by DSSM; the
user only needs to provide the appropriate difference parameters and gradient

Software for Estimating Sparse Hesslan Matrices -+ 365

differences. Additional information on DSSM and FDHS can be found in Sections
2 and 3, respectively. An example illustrating the use of subroutines DSSM and
FDHS is provided in Section 4. This example also serves as a test program for
our package. ’

An overview of the complete package is presented in Section 5. Users interested
in algorithmic details should consult Section 6 where we describe the algorithms

“that determine the partition of the columns of A in the direct method and the

permutation matrix « in the indirect method. The interface subroutines and the
subroutines that implement the algorithms of Section 6 are new; all other
subroutines are from the package of Coleman, Garbow, and Moré [1] for esti-
mating sparse Jacobian matrices.

Numerical results are presented in Section 7. We discuss the performance of
DSSM on the Everstine [4] sparsity patterns, and we also compare our software
with subroutines TD03A and TD03B in the Harwell subroutine library.

2. SUBROUTINE DSSM

Given the sparsity pattern of a symmetric matrix A of order n, subroutine DSSM
determines a symmetric permutation of A and a partition of the columns of A
consistent with the determination of A by a lower triangular substitution method.

The user specifies a definition of the sparsity pattern of A by providing the
pairs (i, j) for which a; # 0. Since A is symmetric, it is only necessary to provide
the indices for the nonzero elements in the lower triangular part of A:

(indrow(k), indcol(R)), k=1,2,..., npairs. (2.1)

These pairs can be provided in any order. Duplicate pairs are allowed, but the
subroutine eliminates them. DSSM requires that the diagonal elements be part
of the sparsity pattern and replaces any pair (i, j) where i < j with the pair
(J,).

On output, DSSM defines the symmetric permutation of A via the integer
array listp by placing the (i, j) element of A in the (listp(i), listp(j)) position of
the permuted matrix. Since the permuted matrix is # TAx, it follows that column
listp(j) of = is the jth column of the identity matrix. The partition of the columns
of A is defined via the integer array ngrp by setting ngrp(j) to the group number
of column j. In addition, the variable mingrp provides a lower bound on the
number of groups required in a partition consistent with the determination of A
by a lower triangular substitution method, and the variable maxgrp is the number
of groups in the partition obtained by DSSM.

On output, DSSM also has transformed the specification of the sparsity pattern
provided by indrow and indcol into an alternative specification more appropriate
for the algorithms used by DSSM. The original data is effectively preserved
because this alternative specification allows the user to recover the pairs (i, j)
for which a;; # 0. Details are provided at the end of this section. ,

The algorithm used by DSSM to determine the symmetric permutation and
the partition of the columns of A depends on the integer parameter method. If
method = 1, then DSSM uses a direct method; otherwise an indirect method is
used.

The value of mingrp is independent of the choice of method. If L, is the lower
triangular part of x TAx and pp.,(7) is the maximum number of nonzeros in any

366 . - T. F. Coleman, B. S. Garbow, and J. J. Moré

row of L., then DSSM sets
mingrp = min{pma(7): * a permutation).

The value of maxgrp, on the other hand, is heavily dependent on the choice of
method. The direct method usually requires more evaluations of Ad to determine
A than the indirect method. Thus, if method = 1, a user should expect a larger
value of maxgrp than for method # 1. However, the direct method produces a
more accurate approximation to the Hessian matrix; see, for example, the
numerical results in Section 4.

Our experience on practical problems is that a direct method usually determines
a partition with maxgrp about 50 percent higher than with an indirect method.
We have also noted that the indirect method in DSSM typically requires one or
two more groups than the bound specified by mingrp. For some problems maxgrp ‘
agrees with mingrp and then DSSM is an optimal lower triangular substitution
method.

Execution times for the indirect method in DSSM are satisfactory—the number
of operations required by one call is proportional to

-21 pi(x), (2.2)
where p;(x) is the number of nonzeros in the ith row of L,. Estimates for the
execution time of the direct method are not as simple. We note, however, that in
all the practical problems tried, the direct method has been faster than the
indirect method. Of course, the claim that (2.2) is a measure of the running time
of DSSM assumes that npairs is not more than a constant times (2.2). This is
certainly the case in any nontrivial situation since (2.2) is not less than the
number of nonzero elements in the lower triangular part of A.

An impression of the overhead required by DSSM can be obtained by noting
that for a quadratic mapping f, the number of operations needed to evaluate the
Hessian matrix by differences is at least (2.2). Indeed, since a lower triangular
substitution method requires at least pma(7) gradients, the number of operations
needed to evaluate all the gradients is at least

Prmax(7) -21 pi(x). (2.3)
Note that (2.2) is bounded above by (2.3) for any choice of permutation
matrix «. If Vf is a nonlinear mapping, then estimation of the Hessian matrix is
likely to require considerably more operations than (2.3). Moreover, in a typical
nonlinear problem DSSM will only be called once, whereas it will be necessary
to estimate the Hessian matrix many times. These arguments support our claim
that the execution times for DSSM are satisfactory.

Implementation of DSSM, so that the execution time is bounded by a constant
multiple of (2.2), requires an appropriate data structure. The pairs (i, j) for which
a; # 0 is a convenient data structure for the user, but DSSM requires a different
data structure. The algorithms called by DSSM require both column-oriented
and row-oriented definitions of the sparsity pattern of the lower triangular part
of A. The arrays indrow and jpntr provide a column-oriented definition if the

CAAE T iiiame o~ Marhamatical Qaftware Val 11 Nao 1 Daecember 1985,

Software for Estimating Sparse Hessian Matrices - 367

row indices for the nonzero elements of the jth column are
indrow(k), k = jpntr(j),...,jpntr(j + 1) = 1,

while the arrays indcol and ipntr provide a row-oriented definition if the column
indices for the nonzero elements of the ith row are

indcol(k), k =ipntr(i),...,pntr(i + 1) — 1.

Given the pairs (2.1) for which a; # 0, subroutine DSSM generates column-
oriented and row-oriented definitions of the sparsity pattern of the lower trian-
gular part of A. The original data can be recovered because

(‘ndmw(k)’])’ k =]Pnt"(1), oo ,jpnt"(j + 1) - 11

are the nonzero elements in column j of the lower triangular part of A; the
nonzero elements in a given row can be generated in a similar manner.

3. SUBROUTINE FDHS

Given a symmetric permutation of the Hessian matrix and a partition of the
columns of the Hessian matrix consistent with the determination of the Hessian
matrix by a lower triangular substitution method, subroutine FDHS computes
an approximation to the Hessian matrix.

Most of the information needed by FDHS is provided by DSSM. In particular,
the symmetric permutation is defined by the array listp and the partition is
defined by the array ngrp. The user must provide an array eta of difference
parameters and, for each group number numgrp, an array fhesd with an approx-
imation to V?f(x)d where the vector d is defined by setting d(j) = eta(}) if ngrp(j)
= numgrp and d(j) = 0.0 otherwise. We do not discuss techniques for choosing
the difference parameters, but see, for example, [3], and [5]. The approximation
to V2f(x)d would usually be either (1.1) or (1.2).

The lower triangular method requires that the approximations to V?f(x)d be
stored in special locations of the array fhes. This is done by executing

call fdhs(n, indrow, jpntr, indcol, ipntr, listp,
. ngrp, maxgrp, numgrp, eta, fhesd, fhes, iwa)
successively with numgrp =1, 2, . . ., maxgrp. On the call with numgrp = maxgrp,
FDHS proceeds to overwrite fhes w1th the approximation to the lower triangular
part of the Hessian matrix. Storage is done with a column-oriented definition of
the sparsity pattern, and thus the nonzero elements of column j in the lower
triangular part of the Hessian matrix are

fhes(k), k= jpntr(j),...,jpntr(j +1) — 1.
An example of the use of FDHS can be found in the next section.

4. EXAMPLE

We illustrate the use of subroutines DSSM and FDHS by considering the problem
of approximating the Hessian matrix in a minimal surface problem.

The classical minimal surface problem is to find a function with minimal
surface area over the unit square and with specified values at the boundary. We

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

368 . T. F. Coleman, B. S. Garbow, and J. J. Moré

nnz=0
dol10j=1,n
nnz =nnz + 1
indcol(nnz) = j
indrow(nnz) = j
if (mod(j, l) .ne. 0) then
nnz=nnz+1
indcol(nnz) = j
indrow(nnz) = j +1
end if
if (j+ 1) le. n) then
nnz=nnz+1
indcol(nnz) = j
indrow(nnz) = j + |
if (mod(j, l) .ne. 1) then
nnz=nnz+1
indcol(nnz) = j
indrow(nnz) =j+1—1
end if
if (mod(j, l) .ne. 0) then
nnz=nnz+1
indcol(nnz) = j
indrow(nnz) = j+1+1
end if
end if
10 continue

Program I

discretize this problem as done by Griewank and Toint [7]. The unit square is
subdivided into m = (I + 1)? equal subsquares so that the unknowns of the
problem become the n = [? function values at interior corners of the subsquares.
The discrete minimal surface problem is then to minimize

[

fx) = ¥ o0ij(x), | (4.1)
i,j=0
where o, (x) is the surface area approximation for the i, j subsquare; if we let
£, = s/(I + 1), then the i, j subsquare has coordinates (£;, £) in the corner closest
to the origin. For the interior subsquares we use the approximation

1{ m 1/2
gij(x) = - (1 + P (ki1 — 2% + (Xaws — xh+l)2)> ,

where x;, with k = I(j — 1) + i, is the minimal area function at (£, £)). A similar
approximation is used for the subsquares on the boundary. Thus V2f(x) is a block
tridiagonal matrix where each block is a tridiagonal matrix of order L

The sparsity pattern of the Hessian matrix of (4.1) can be specified by
Program I where it is assumed that n = [%. Given the sparsity pattern, an
appropriate partition can be determined with a call to DSSM:

call dssm(n, nnz, indrow, indcol, method, listp, ngrp, maxgrp, mingrp,
* info, ipntr, jpntr, iwa, liwa).

As pointed out in Section 2, on output from DSSM the array pairs indrow, jpntr

2
3
3
3

v

PP T

PRI TY E S Y R SIN R WY

Software for Estimating Sparse Hessian Matrices + 369

Table I. Output from DSSM for Minimal Surface Problem
Direct method Indirect method

n nnz mingrp maxgrp time maxgrp time
100 442 5 10 0.37 7 0.57
400 1882 5 - 10 1.52 7 . -2.53
900 4322 5 11 3.67 7 5.72

1600 7762 5 11 6.40 7 10.30
2500 12202 5 10 9.55 7 17.80

call fen(l, x, gvec)

do 30 numgrp = 1, maxgrp
dol0j=1,n
xd(j) = x(j)
if (ngrp(j) .eq. numgrp) xd(j) = x(j) + eta(j)
10 continue

call fen(l, xd, fhesd)
do20i=1,n
fhesd(i) = fhesd(i) — gvec(i)
20 continue
call fdhs (n, indrow, jpntr, indcol. ipntr, listp,

ngrp, maxgrp, numgrp, eta, fhesd, fhes, iwa)
30 continue :

Program I

and indcol, ipntr provide, respectively, column-oriented and row-oriented defini-
tions of the sparsity pattern for the lower triangular part of the Hessian matrix.
In this section we are mainly interested in the output values of mingrp and
maxgrp.

Table I shows that for this problem the maxgrp values for the direct method
(method = 1) are about 50 percent higher than for the indirect method; this is
typical. Also note that the indirect method requires two more groups than the
bound specified by mingrp. This is not unusual, although for many problems
maxgrp is closer to mingrp. We will discuss further the relationship between
maxgrp and mingrp in Section 7.

The timing results in Table I show that for this problem the execution time
(measured in seconds on a VAX 11/780) for the indirect (as well as the direct)
method in DSSM is approximately a linear function of n. This is as expected
because the execution time for the indirect method is proportional to (2.2), and
for the minimal surface problem (2.2) is bounded by a linear function of n. The
timing results further support our observation that on realistic problems the
direct method executes faster than the indirect method.

Given the output from DSSM, we can readily determine an approximation to
the Hessian matrix of (4.1). In addition to the output from DSSM, we need a
subroutine to evaluate the gradient Vf of f. Since o;; has a simple form, and since
(4.1) holds, it is not difficult to write a subroutine fcn(l, x, gvec) which will
evaluate Vf at x and return Vf(x) in the array gvec of length n = I Given this
information, we can call FDHS to obtain an approximation to the Hessian matrix
of f. Assuming that eta is a vector of difference parameters suitable for the
forward difference approximation (1.1), the code in Program II stores the ap-
proximation in the array fhes.

370 . T. F. Coleman, B. S. Garbow, and J. J. Moré

Table II. Output from FDHS
Direct method Indirect method
n abserr relerr abserr relerr

100 24e—4 65e—3 36e—4 1.0e—2
400 33e—4 22¢-2 lle—3 5.le-—-2
900 48¢—4 48e¢—2 34e-3 1l2e-1
1600 6.3e—4 86e—2 83e—3 34e-1
2500 78e—4 13e—-1 74e-3 1.Te-1

We have already noted that indirect methods usually determine the Hessian
matrix with fewer evaluations of the gradient. This is clearly an advantage. On
the other hand, indirect methods produce less accurate approximations to the
Hessian matrix than direct methods. We will use the minimal surface problem
to illustrate this last point.

Table II shows the largest absolute and relative errors of the approximate
Hessian matrix when FDHS is used to approximate the Hessian matrix of (4.1)
at the point x where

with £ = s/(l + 1). At this point the magnitudes of the nonzero elements of the
Hessian matrix range between 2.0 and about 1/n. The approximate Hessian
matrix was determined by Program II with difference parameters

eta(j) = 107, (4.2)

All computations were done in single precision on a VAX 11/780 which has a
machine precision of 1.2 10",

Table II shows that the direct method produces a more accurate approximation
to the Hessian matrix. In a direct method, the accuracy of the approximate
Hessian matrix is completely determined by the choice of difference parameters,
and in this case the accuracy is quite reasonable. In an indirect method, the
accuracy of the approximate Hessian matrix also depends on the errors from the
substitution process. The results of Table II show that in this case the additional
loss of accuracy is not severe.

The error analysis in [10] suggests that the loss of accuracy in an indirect
method can be severe if the difference parameters vary significantly in magnitude.
We illustrate this possibility with the choice of difference parameters

_4 . —
etaj) =2 110 ([’ z 1] + 1), (4.3)
where [r] is the integer part of r. This choice of difference parameters satisfies

eta(j) € [(1/1)5 1074, 5107 = I.

For the minimal surface problem it can be shown that any choice of difference
parameters in the interval I is reasonable. Thus, it is not surprising that in Table
III the errors for the direct method with choice (4.3) are quite similar to those
obtained with choice (4.2), with the errors increasing by at most a factor of 3.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Software for Estimating Sparse Hessian Matrices + 371

Table III. Output from FDHS
Direct method Indirect method
n abserr relerr abserr relerr

100 32e—4 1l4e—2 30e—3 78e—2

_ 400 6.7e—4 56e—2 46e—2 29 +0

-) 900 13¢—3 12e—-1 36e—2 12 +0
' 1600 12e -3 21le—=1 35-1 77e+0
2500 15¢ -3 33e—1 28e—-1 2le+1

The reason for choice (4.3) is to illustrate the effect of variations in the magnitude
of difference parameters on the errors for the indirect method.

The results of Table III show that the use of the indirect method leads to
significant increases in the magnitude of the errors. The absolute errors have
grown by a factor of about /, with dramatically larger increases in the last two
cases, while the relative errors show that some of the entries in the approximate

"~ Hessian matrix have no correct digits.

The importance of the loss in accuracy with an indirect method depends on
the application and on the precision of the computations. In this example, all
computations were done with a precision of about six decimal digits, and thus
the additional loss of accuracy is severe. If all computations, including the
evaluation of the gradient, had a higher precision, then the loss would not be as
significant. ‘

5. SUBROUTINES FOR ESTIMATING SPARSE HESSIAN MATRICES

In addition to the interface subroutines DSSM and FDHS, implementation of a
lower triangular substitution method requires seven subroutines from the package
of Coleman, Garbow, and Moré [1] for estimating sparse Jacobian matrices, and
three new subroutines. In this section we present an overview of the complete
package.

There are two stages in the implementation of a lower triangular substitution
method. The first stage computes a suitable permutation matrix » and determines
a partition of the columns of A such that columns of L, in the same group do not
have a nonzero in the same row position. The input to the first stage is the
sparsity pattern of the matrix A. In the second stage, appropriate difference
parameters and gradient differences must be provided, in addition to a description
of the permutation matrix » and the partition of the columns of the Hessian
matrix. The result of the second stage is an approximation to the Hessian matrix.

In a direct method we first obtain the partition of the columns of A and then
determine the permutation matrix =, the reverse order of the indirect method.
Subroutine SDPT determines the partition in the direct method, while the
permutation for the indirect method is obtained with subroutines SLOG and
IDOG. These three subroutines can be conveniently viewed as graph algorithms.
They are discussed further in Section 6, where we also describe the choice of
permutation for the direct method.

The software for determining the partition in the indirect method is based on
the subroutine package in [1]. Given row-oriented and column-oriented defini-

ACM Transactions on Mathematical Software. Vol. 11, No. 4. December 1985.

372 - T.F.Coleman, B. S. Garbow, and J. J. Moré

tions of the sparsity pattern of an m by n matrix B, these subroutines produce a
partition of the columns of B such that columns in the same group do not have
a nonzero in the same row position. We can thus determine an appropriate
partition if we obtain row-oriented and column-oriented definitions of the spars-
ity pattern of L,.

The transition from (2.1) to the appropriate data structure for L, is not
difficult. Recall that the input pairs (2.1) specify the nonzero elements in the
lower triangular part of A, and that the array listp describes the permutation
matrix = by requiring that column listp(j) of = be column j of the identity matrix.
Element (listp(i), listp(j)) of xTAx is thus a;, and hence the program segment

do 10 k = 1, npairs
i = indrow(k)
J = indcol(k)
indrow(k) = max(listp(i), listp(}))
indcol(k) = min(listp(i), listp(j))
10 continue

generates the sparsity pattern of L,. The appropriate data structure for L, can
now be obtained because a standard task in sparse matrix manipulation is to
transform this description of the sparsity pattern of a matrix into row-oriented
and column-oriented definitions of the sparsity pattern. See, for example, [1].

We complete this overview with some algorithmic details on the interface
subroutine FDHS. We follow the outline presented in the introduction, and
assume that rows k + 1 through n of L, have been determined. The kth row can
then be determined in three steps.

(1) Leti=x""(k).

(2) Find the positions of the elements in the ith row of A that have been
determined.

(3) For each element a; that has not been determined, let C be the group of
column j and form

o; = 2 diay.
=(i)s=()),l€C.

Compute a;; and store it in the appropriate position.

Implementation of these steps needs a bit of clarification and care. Step (1)
requires the inversion of the permutation ». In step (2) we can find out if an
element a; has been determined by checking that x(i) = =(j). The position of a;
in the column-oriented storage of the lower triangular part of A is stored in an
auxiliary integer work array of length n. Given the information determined in
step (2), the sum o;; in step (3) is formed by noting that [€ C if and only if
ngrp(l) = ngrp(j). Element a; is computed via

ag = ((Ad); - 0,)/8;.

Since this computation requires that (Ad); be readily available, we initially
process all the vectors Ad, and store (Ad); in the position of a;.

The above description provides the major ideas involved in the implementation
of FDHS. If this outline is followed then the execution time of FDHS is bounded

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Software for Estimating Sparse Hessian Matrices -+ 373

by (2.3). This bound is adequate because, as noted in Section 2, the number of
operations needed to evaluate all the vectors Ad is at least (2.3).

6. GRAPH ALGORITHMS

The algorithms for obtaining the partition of the columns of A in a direct method,
and the permutation matrix » in an indirect method, can be readily expressed as
graph algorithms. The purpose of this section is to provide algorithmic details.

A graph G is an ordered pair (V, E) where V is a finite and nonempty set of
vertices and the edges E are unordered pairs of distinct vertices. The vertices u
and v are adjacent if (u, v) is an edge with endpoints u and v. The degree of a
vertex v is the number deg(v) of edges with v as an endpoint. Given a nonempty
subset W of V, the subgraph G[W] induced by W has vertex set W and edge
(u,v)if(u,v) EEandu,vE W.

Given a symmetric matrix A of order n, the appropriate graph for our work
has vertices 1, 2, ..., n and edge (i, j) if and only if i # j and a; # 0. In graph
theory terminology, this is the adjacency graph of A. An ordering of the vertices
of the adjacency graph of a matrix A thus corresponds to a permutation of the
rows and columns of A.

In the smallest-last ordering vertex v, is determined after vx4;, ..., U, have
been selected by choosing v, so that its degree in the subgraph induced by

V_ {vh-bl, DY vn}

is minimal. In the incidence degree ordering v, is determined after v, ..., Vs
have been selected by choosing v, so that its degree in the subgraph induced by
{1, ..., vk} is maximal. The incidence degree of v, is the degree of v, in this
subgraph.

The smallest-last and incidence degree orderings are implemented by subrou-
tines SLOG and IDOG, respectively. These subroutines can be implemented to
run in time proportional to | V| + | E | provided we are given the adjacency lists
for the graph; that is, arrays npntr(-) and nghbr(-) such that the vertices adjacent
to the jth vertex are

nghbr(k), k= npntr(j), ..., npntr(j +1) — 1.

See, for example, the description in [9] for the smallest-last ordering. In our
application we are working with the adjacency graph of A and have row-oriented
and column-oriented data structures for the lower triangular part of A. Thus

{i: i =indrow(k), k=jpntr(j),...,jpntr(j +1) -1}
are the vertices adjacent to vertex j with i = j, and
{i: i =indcol(k), k=ipntr(j),...,pntr(j+1) -1}

are the vertices adjacent to vertex j with i < j. These are, respectively, the
successor and predecessor adjacency lists. This is an uncommon data structure
for a graph algorithm, but since all vertices adjacent to a given vertex can be
readily determined, it is not difficult to implement the ordering algorithms to
run in time proportional to | V| + | E|. Thus the execution time for subroutines
SLOG and IDOG is proportional to the number of nonzero elements in A.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

374 - T.F.Coleman, B. S. Garbow, and J. J. Moré

Recall that pmes(x) is the maximum number of nonzeros in any row of L,.
Matula [8], and Powell and Toint [10], proved independently that the smallest-
last ordering produces a permutation »; which minimizes pma:() over all possible
permutations. This is an important property because a lower triangular substi-
tution method needs at least pma:(x) groups. From this point of view, any
permutation =, such that

Pmax(®2) = Pmaz(71) ' (6.1)

is equivalent to x,. We have observed that (6.1) usually holds when = is the
permutation produced by the incidence degree ordering of subroutine IDOG, and
that in these cases the use of r, leads to better results. Thus DSSM only uses
the permutation =, generated by SLOG if (6.1) fails.

Subroutine SDPT implements the direct method of Powell and Toint [10]. As
pointed out by Coleman and Moré [2], this method can be viewed as a graph
algorithm that determines a mapping ¥ which assigns to each vertex v an integer
Pw) €1{1,2,..., | V]} such that if w is adjacent to distinct vertices v, and v,
with ¢(v,) = Y(v2) then

P(w) < P(vy) = P(vy). .
The kth stage of the direct method consists of the following four steps.

(1) Let U, be the unassigned vertices. If U, is empty then terminate the
algorithm. ‘

(2) Sort the vertices of G[U,] in decreasing order of degree in G[U,].

(3) Build a vertex set W, by examining the vertices in Uj in the order determined
in (2), and adding a vertex v to W, if there is not a path in G[U,] between v
and some vertex in W, of length [< 2.

(4) For each v € W, let $(v) = k.

If the above algorithm is applied to the adjacency graph of A, then the mapping
¢ defines a partition of the columns of A such that if two columns in the same
group have a nonzero in row k, then column k is in a previous group. The direct
method can be viewed as a lower triangular substitution method for any permu-
tation matrix = such that the sequence {¥(x(i))} is nondecreasing. This claim
will be established by showing that columns of L, in the same group do not have
a nonzero in the same row position. If columns i and j of L, have a nonzero in
row k then k = max(i, j) because L, is lower triangular. Hence, by definition of
x we must have '

- P(x(k)) = max(P(x(i)), (x()))).

On the other hand, if columns i and j of L, are in the same group then
@(x(i)) = P(x(j)), and the algorithm which determines ¥ guarantees that

Px(k)) < P(x(2)) = P(x(j))-

This contradiction shows that the direct method of Powell and Toint is actually
a lower triangular substitution method.

It is not difficult to implement the direct method if we are given predecessor
and successor adjacency lists. Step (3) is the most expensive because it requires

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

1

Software for Estimating Sparse Hessian Matrices - 375

Table IV. DSSM output for Everstine Problems

Direct Indirect
n nnz mingrp maxgrp maxgrp

59 163 4 6 4
66 193 3 6 3
72 147 3 4 3
87 314 5 10 6
162 672 5 10 6
193 1843 12 27 17
198 795 5 10 6
209 976 7 13 9
221 925 5 10 6
234 534 3 5 4
245 853 6 10 7
307 1415 6 11 7
310 1379 5 10 6
346 1786 7 15 10
361 1657 5 10 7
419 1991 7 13 8
492 1824 5 9 5
503 3265 9 21 12
512 2007 7T 13 8
592 2848 6 11 8
607 2869 6 13 8
758 3376 5 10 7
869 4077 6 12 8
878 4163 5 11 7
918 4151 6 11 7
992 8868 10 23 14
1005 4813 10 19 13
1007 4791 5 11 7
1242 5834 7 13 8
2680 13853 7 13 9

inspection of vertices 2 edges away from any given vertex v € U,. The precise
amount of work is difficult to predict, but has turned out to be reasonable in all
the practical cases tried.

7. NUMERICAL RESULTS

Table IV shows the results of using DSSM on the 30 sparsity patterns of the
Everstine [4] collection. The patterns are for symmetric matrices with orders
ranging from 59 to 2680. Table IV contains the order n of the matrix, the number
nnz of nonzeros in the lower triangular part of the matrix, the lower bound
mingrp, and the output values of maxgrp for both the direct and indirect methods
in DSSM. The results show that on the Everstine problems the direct method in
DSSM usually determines a partition with maxgrp about 50 percent higher than
with the indirect method, while the indirect method usually requires one or two
more groups than the bound specified by mingrp.

It is important to note that lower triangular substitution methods may not be
able to determine a matrix with mingrp groups. For example, the construction in
Theorem 7.2 in [2] shows that there are symmetric matrices A of order n with
mingrp = 3 but such that any lower triangular substitution method requires at
least n'/® groups to determine A.

The sparsity patterns of the Everstine problems are irregular, and this makes
it difficult to decide if a lower triangular substitution method can determine the
matrices with mingrp groups; for regular sparsity patterns this is sometimes

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

376 - T.F.Coleman, B. S. Garbow, and J. J. Moré

possible. For example, Goldfarb and Toint [6] have shown that for the pattern
of the Hessian matrix of (4.1) and for other patterns arising from finite difference
approximations to partial differential equations there is an indirect method,
dependent on the stencil used in the finite difference scheme, which determines
the matrix with mingrp groups. '

It-is also worthwhile noting that direct methods may not be able to take
advantage of symmetry. For example, Coleman and Moré [2] have shown that if
A is a symmetric band matrix such that

e #0e |[i—j| =8

then a direct method requires at least 28 + 1 groups (an indirect method can
determine A with 8 + 1 groups). The direct method has not taken advantage of
symmetry since it is possible to determine any (unsymmetric) band matrix in
28 + 1 groups. We conjecture that direct methods cannot take advantage of
symmetry in the minimal surface problem. Since a lower bound on the number
of groups needed to determine a general matrix A is the maximum number of
nonzeros in any row of A, our conjecture is that any direct method for the
minimal surface problem requires at least 9 groups. Interestingly enough, the
subroutine package in [1] determines any band matrix in at most 28 + 1 groups,
and determines any matrix with the sparsity pattern of the minimal surface
problem in 9 groups.

Finally, we turn to a brief comparison of our software with subroutines TD03A
and TDO03B in the Harwell subroutine library. -

Subroutines DSSM and TD03A have the same purpose, but use different
algorithms to analyze the sparsity pattern. On input both subroutines require
the sparsity pattern for the lower triangular part of A. DSSM requires the pairs
(i, j) for the nonzero elements, while TDO3A requires a column-oriented defini-
tion with the restriction that indrow(jpntr(j)) = j. In terms of storage require-
ments, DSSM needs 2nnz + 10n integer words while TDO3A needs 3nnz + 5n
integer words. Another difference is that TDO3A does not have the option to
specify a direct method; as demonstrated in Section 4, this DSSM option is
worthwhile.

We have also compared the number of groups required by DSSM and TD03A
to estimate a given sparsity pattern. Our numerical results for various types of
sparsity patterns show that the indirect method in DSSM often requires fewer
groups- but never requires more groups than TDO3A. In particular, on the
Everstine problems DSSM obtains a partition with fewer groups on 19 problems.
This represents an average improvement of 10 percent.

Subroutines FDHS and TDO03B compute the approximate Hessian matrix but
use different mechanisms to obtain the gradient information. FDHS uses a
reverse communication interface, while with TDO3B the user supplies a subrou-
tine which evaluates the gradient. FDHS needs 2nnz + 5n integer words and
nnz + 2n working precision words of storage, while TD03B needs 3nnz + 4n
integer words and nnz + 5n working precision words.

Our initial testing revealed that the accuracies of the approximate Hessian
matrices determined by FDHS (indirect method option) and TD03B are similar
if the difference parameters are equal, but that FDHS provides a significantly

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

-

Software for Estimating Sparse Hessian Matrices - 377

more accurate approximation to the Hessian matrix if the parameters are
different. In particular, for the minimal surface problem with difference param-
eters (4.2), the errors for TDO3B are just slightly larger than those in Table II;
however, for choice (4.3) the errors for TDO3B are at least 100 times larger than
those in Table III. Alerted to this comparison, Philippe Toint discovered and
corrected an error in TDO03B. For the minimal surface problem with difference
‘parameters (4.2), the errors for the corrected TD03B are now similar to those in
Table II. The errors for choice (4.3) have decreased, but they are still significantly
larger than those in Table III; in particular, the relative errors for n = 1600 and
n = 2500 are at least 100 times larger.

Finally, let us mention the length of the source programs. The five new
subroutines needed to implement lower triangular substitution methods contain
1290 lines (rounded to the nearest multiple of 10) of which 800 are comments.
We also need seven routines from the subroutine package of Coleman, Garbow,
and Moré [1] which contain 1030 lines of which 730 are comments. In contrast,
the subroutines in the TD03A/TDO03B package contain 890 lines of which 480
are comments. o

REFERENCES

1. CoLEMAN, T. F., GARBOW, B. S., AND MORE, J. J. Software for the estimation of sparse
Jacobian matrices. ACM Trans. Math. Softw. 10, 3 (Sept. 1984), 329-345.

2. COLEMAN, T. F. AND MoORE, J. J. Estimation of sparse Hessian matrices and graph coloring
problems. Math. Program. 28, (Apr. 1984), 243-270. _

3. CuRrTIS, A. R.AND REID, J. K. The choice of step lengths when using differences to approximate
Jacobian matrices. J. Inst. Math. Appl. 13, (Feb. 1974), 121-126.

4. EVERSTINE, G. C. A comparison of three resequencing algorithms for the reduction of matrix
profile and wavefront. Int. J. Numer. Meth. Eng. 14, (June 1980), 837-853.

5. GILL, P. E., MURRAY, W. AND WRIGHT, M. H. Practical Optimization. Academic Press, New
York, 1981.

6. GOLDFARB, D. AND TOINT, P. L. Optimal estimation of Jacobian and Hessian matrices that
arise in finite difference calculations. Math. Comp. 43, (July 1984), 69-88.

7. GRIEWANK, A. AND TOINT, P. L. Partitioned variable metric updates for large structured
optimization problems. Numer. Math. 39, (June 1982), 119-137.

8. MATULA, D. W. A min-max theorem for graphs with application to graph coloring. SIAM Rev.
10, (Oct. 1968), 481-482.

9. MATULA, D. W. AND BEck, L. L. Smallest-last ordering and clustering and graph coloring
algorithms, J.A.C.M. 30, (July 1983), 417-427. :

10. POWELL, M. J. D. AND TOINT, P. L. On the estimation of sparse Hessian matrices, SIAM J.

Numer. Anal 16, (Dec. 1979), 1060-1074.

Received January 1985; accepted September 1985.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

